Project 1: Sorting

Overview

You will write a simple sorting program. This program should be invoked as follows:
% ./fastsort inputfile outputfile

The above line means the users typed in the name of the sorting program . /fzstsort and
gave it two inputs: an input file to sort called +npuzfile and anoutput file to put the
sorted results into called outpurfile .

Input files are generated by a program we give you called generate.c (good name, huh?).

After running zenerate , you will have a file that needs to be sorted. It will be filled with
binary data, of the following form: a series of 100-byte records, the first four bytes of which
are an unsigned integer key, and the remaining 96 bytes of which are integers that form
the rest of the record. Something like this (where each letter represents two bytes):

kkRRRRRRRRRRRRRRRRRRRRRRRRRRARRRRRRRRRRRRRRRRRRRRRR

Your goal: to build a sorting program called fzstsort that takes in one of these generated
files and sorts it based on the 4-byte key (the remainder of the record should of course be
kept with the same key). The output is written to the specified output file.

Some Details

Using zenerate is easy. First you compile it as follows:
% gocc -0 generate generate.c -Wall -Werror

Note: you will also need the header file sort.h to compile this program.

Then you run it:

% ./generate -s @ -n 188 -o /tmp/outfile

There are three flags to zenerzt= . The -s flag specified a random number seed; this
allows you to generate different files to test your sorton. The -n flag determines how
many records to write to the output file, each of size 100 bytes. Finally, the -o flag
determines the output file, which will be the input file for your sort.

The format of the file generated by the generate.c program is very simple: it is in binary
form, and consists of those 100-byte records as described above. Acommon header file
sort.h has the detailed description.

Another useful tool is dump.c. This program can be used to dump the contents of a file
generated by zenerste or by your sorting program.

Hints

In your sorting program, you shall use system calls (open() , read() , write() , close() ,
etc.), rather than standard library functions(fopent) , fclos()). See generate.c oOr

dump.c .
If you need to know the size of an input file, stat(; or fswaz() could help.

To sort the data, use any old sort that you'd like to use. An easy way to go is to use the
library routine gsort() .

To exit, call exit() withasingle argument. This argumentto =xit() isthen available to
the user to see if the program returned an error (i.e., return 1 by calling exiz(1)) orexited
cleanly (i.e., returned 0 by calling exit(e)).

The routine mallec() is useful for memory allocation. Make sure to exit cleanly if malloc
fails!

If you don't know how to use these functions, use the man pages. For example, typing man
gsort at the command line will give you a lot of information on how to use the library
sorting routine.

Assumptions and Errors

« 32-bit integer range. You may assume that the keys are unsigned 32-bit integers.

« File length: May be pretty long! However, there is no need to implement a fancy two-
pass sort or anything like that; the data set will fit into memory.

« [nvalid files: If the user specifies an input or output file that you cannot open (for
whatever reason), the sort should EXACTLY print: Error: Cannot epen file foo\n , With
no extra spaces (if the file was named foo) and then exit.

« TJToo few or many arguments passed to progranr. If the user runs fastsort without any
arguments, or in some other way passes incorrect flags and such to fastsort, print

Usage: fastsort dnputfile outputfile and exit.

Important: On any error code, you should print the error to the screen using fprintf() ,
and send the error messageto stderr (standard error)and not =tdour (standard
output). This is accomplished in your C code as follows:

fprintf(stderr, “whatever the error message is\n®);

Hand In

You should hand in only one source file: fast=ort.c (withoutthe ".0" file).

General Advice

Start small, and get things working incrementally. For example, first get a program that
simply reads in the input file, one line at a time, and prints out what it reads in. Then,
slowly add features and test them as you go.

Testing is critical. One great programmer | once knew said you have to write 5-10 lines of
test code for every line of code you produce; testing your code to make sure it works is
crucial. Write tests to see if your code handles all the cases you think it should. Be as
comprehensive as you can be. Of course, when grading your projects, we will be. Thus, itis
better if you find your bugs first, before we do.

Keep old versions around. Keep copies of older versions of your program around, as you
may introduce bugs and not be able to easily undo them. A simple way to do this is to keep
copies around, by explicitly making copies of the file at various points during
development. For example, let's say you get a simple version of fastsort.c working (say,
that just reads in the file); type co fastsort.c fastsort.vi.c to make a copy into the file

fastsort.vl.c . More sophisticated developers use version control systems like CVS (old
days) or mercurial or git (modern times), but we'll not get into that here (though you can,
and perhaps should!).

Adapted from WISC CS537 by Remzi Arpaci-Dusseau

http://getfireshot.com/pdf_aHR0cDovL3lid3Uub3JnL2VjbnUtb3NsYWJzL3Byb2plY3RzL3NvcnRpbmcvc3JjL2dlbmVyYXRlLmM=
http://getfireshot.com/pdf_aHR0cDovL3lid3Uub3JnL2VjbnUtb3NsYWJzL3Byb2plY3RzL3NvcnRpbmcvc3JjL3NvcnQuaA==
http://getfireshot.com/pdf_aHR0cDovL3lid3Uub3JnL2VjbnUtb3NsYWJzL3Byb2plY3RzL3NvcnRpbmcvc3JjL3NvcnQuaA==
http://getfireshot.com/pdf_aHR0cDovL3lid3Uub3JnL2VjbnUtb3NsYWJzL3Byb2plY3RzL3NvcnRpbmcvc3JjL2R1bXAuYw==
http://getfireshot.com/pdf_aHR0cHM6Ly9naXQtc2NtLmNvbS8=
http://getfireshot.com/pdf_aHR0cDovL3BhZ2VzLmNzLndpc2MuZWR1L35yZW16aS9DbGFzc2VzLzUzNy9GYWxsMjAxMy9Qcm9qZWN0cy9wMWEuaHRtbA==

